Fast and Adaptively Secure Signatures in the Random Oracle Model from Indistinguishability Obfuscation

نویسندگان

  • Bei Liang
  • Aikaterini Mitrokotsa
چکیده

Indistinguishability obfuscation (iO) is a powerful cryptographic tool often employed to construct a variety of core cryptographic primitives such as public key encryption and signatures. In this paper, we focus on the employment of iO in order to construct short signatures with strong security guarantees (i.e., adaptive security) that provide a very efficient signing process for resource-constrained devices. Sahai and Waters (SW) (STOC 2014) initially explored the construction of iO-based short signature schemes but their proposal provides selective security. Ramchen and Waters (RW) (CCS 2014) attempted to provide stronger security guarantees (i.e., adaptive security) but their proposal is much more computationally expensive than the SW proposal. In this work, we propose an iO-based short signature scheme that provides adaptive security, fast signing for resource-constrained devices and is much more cost-efficient than the RW signature scheme. More precisely, we employ a puncturable PRF with a fixed length input to get a fast and adaptively secure signature scheme without any additional hardness assumption as in the SW signature scheme. To achieve this goal, we employ the technique of Hofheinz et al. called “delayed backdoor programming” using a random oracle, which allows to embed an execution thread that will only be invoked by special inputs generated using secret key information. Furthermore, we compare the cost of our signature scheme in terms of the cost of the underlying PRG used by the puncturable PRF. Our scheme has a much lower cost than the RW scheme, while providing strong security guarantees (i.e., adaptive security).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptively Secure Constrained Pseudorandom Functions

A constrained pseudo random function (PRF) behaves like a standard PRF, but with the added feature that the (master) secret key holder, having secret key K, can produce a constrained key, Kf , that allows for the evaluation of the PRF on a subset of the domain as determined by a predicate function f within some family F . While previous constructions gave constrained PRFs for poly-sized circuit...

متن کامل

Constant Round Adaptively Secure Protocols in the Tamper-Proof Hardware Model

Achieving constant-round adaptively secure protocols (where all parties can be corrupted) in the plain model is a notoriously hard problem. Very recently, three works published in TCC 2015 (Dachman-Soled et al., Garg and Polychroniadou, Canetti et al.), solved the problem in the Common Reference String (CRS) model. In this work, we present a constant-round adaptive UCsecure computation protocol...

متن کامل

A Unified Approach to Idealized Model Separations via Indistinguishability Obfuscation

It is well known that the random oracle model is not sound in the sense that there exist cryptographic systems that are secure in the random oracle model but when instantiated by any family of hash functions become insecure. However, all known separation results require the attacker to send an appropriately crafted message to the challenger in order to break security. Thus, this leaves open the...

متن کامل

Functional Encryption for Turing Machines

In this work, we construct an adaptively secure functional encryption for Turing machines scheme, based on indistinguishability obfuscation for circuits. Our work places no restrictions on the types of Turing machines that can be associated with each secret key, in the sense that the Turing machines can accept inputs of unbounded length, and there is no limit to the description size or the spac...

متن کامل

Random-Oracle Uninstantiability from Indistinguishability Obfuscation

Assuming the existence of indistinguishability obfuscation (iO), we show that a number of prominent transformations in the random-oracle model are uninstantiable in the standard model. We start by showing that the Encrypt-with-Hash transform of Bellare, Boldyreva and O’Neill (CRYPTO 2007) for converting randomized public-key encryption schemes to deterministic ones is not instantiable in the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017